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Longitudinal dispersion of matter due to the shear
effect of steady and oscillatory currents
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The longitudinal dispersion due to the shear effect of a current is examined
theoretically in the idealized two-dimensional case. This study reveals the process
whereby the dispersion reaches a stationary stage after the release of the dispersing
substance as an instantaneous line source in steady and in oscillatory currents. In
addition, the relation between the stationary dispersion coefficients in steady and
oscillatory currents is given analytically. Analysis of the dispersion during the initial
stage needs a clear definition of the vertical average of the variance. We can
understand the problem of the negative dispersion coefficient, which is obtained by
the usual vertical average, through introduction of a new vertical average.

1. Introduction

It has long been known that the ‘shear effect’, which is caused by the combined
action of flow shear and mixing in the cross-sectional plane, has a strong influence
on mass transport in pipes, channels, rivers, estuaries and inlets etc. Longitudinal
dispersion due to the shear effect, after the great work of Taylor (1953, 1954), has
been studied by many workers using theoretical analyses, hydraulic experiments, field
observations and numerical analyses etc. (Fischer ef al. 1979). Understanding the
detailed nature of the shear effect from observing the actual dispersion of matter is
difficult, because the shear effect is in reality a three-dimensional phenomenon. Thus
most work on the shear effect has been concerned with theoretical analyses; although
there has been a gap between the idealized models that have been used and the real
phenomena, because of the assumptions made and the constraintsimposed. Theoretical
analyses are considered to be superior in understanding the basic nature of the
phenomena insofar as there is not too much concern about numerical values. Many
works on dispersion have used larger time periods and neglected periodic variation
in the oscillatory current. The dispersion process from the initial to the stationary
stage has scarcely been clarified analytically. Though Smith (1982) analysed the
variance and the dispersion coefficient during the initial stage in the oscillatory
current, he showed that the dispersion coefficient was sometimes negative. Smith
(1983) also explained that the increasing rate of the variance (corresponding to the
dispersion coefficient) at a particular level is negative in reversing flows of oscillatory
currents. The negative dispersion coefficient is not considered to be reasonable if we
regard the dispersion due to the shear effect as a kind of mixing phenomena such as
turbulent diffusion.

Yasuda (1982) examined the dispersion structure due to the oscillatory boundary
layer, with understanding of the behaviour at each level, and pointed out the problem
of the vertical average of the dispersion coefficient. The present paper will study the
dispersion process from the initial to the stationary stage in both steady and
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Ficurk 1. Two-dimensional model of dispersion due to shear effect. The dispersing substance is
released as an instantaneous line source at x = 0.

oscillatory currents with typical vertical profile, in which a new definition of the
vertical average of the dispersion will be proposed. It will clarify the nature of the
dispersion due to the shear effect and the problem of the negative dispersion
coefficient.

2. Analysis of the advective—diffusion equation in the two-dimensional
plane

This study will analyse the longitudinal dispersion due to the shear effect in the
two-dimensional (x, z)-plane, neglecting the variation with y (figure 1). If the current
u(z,t), independent of x, flows along the z-axis, the advective—diffusion equation
governing the concentration of the diffusing substance S(z, z,t) can be written as

oS o8 %S 028

— N =kt k, = 1

b tue g = hegathgs )
where ¢ is time, and &, and &, are diffusion coefficients (assumed constant). In order
to make the theoretical considerations easier, the water depth is assumed constant,
and the diffusing substance is completely passive, as can be seen from (1). The
boundary conditions for S(z, z,t) are

os =0 atz=0(bottom) and z = H (water surface),

0z (2)
S=0 asz— t+o0.
The initial condition is

S(x,z,0) = %8(:3), (3)

where 8 represents the total amount of the diffusing substance and &(x) is the Dirac
delta function. The initial condition (3) corresponds to an instantaneous line source

at x = 0 due to the absence of variation with y-direction. When the current u(z, t)
is independent of x, Aris’s (1956) method of moments can apply for analysis of the
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matter dispersion. Knowledge of the various moments of the material concentration
suggests the behaviour of the concentration distribution. The pth-order moment of the
concentration at level z and time ¢ is defined as
[e 6]
M,(z,t) = j OOocl’S(ac,z,t) dz, 4)
where p can take any positive integer value. The equation governing the pth-order
moment is given by (1) and (2) as

oM, oM

ot _kzwﬂzpuMghl"'p(p_l)Ksz—z’ (9)
with the boundary condition
0
—é—g—2=0 atz=0andz= H. (6)

M, (z,t) means the amount of the dispersing material at level z, and the normalized
pth-order moment is given by

M (z,t)
=p\=")
/l/p(z’ t) MO(Z, t) * (7)
Furthermore the normalized and central pth-order moment can be defined as
1 e o)
= — )P
$olent) = G| @ Sl 0 da ®)
The variance at level z is
T3z 8) = Py(2,8) = py— 3. 9)
The skewness factor and the flatness factor are
.V(z,t)=?33, .9'“'(z,t)=¢;:——3, (10),(11)
xr x

where o is the standard deviation. The longitudinal dispersion coefficient at level
z and time ¢t is defined in terms of o%(z,¢) as

_ ldai(z1)

D(z,t) T

(12)
The dispersion coefficient D(z, t), which indicates the degree of the dispersion effect,
is obtained from the zeroth-, the first- and the second-order moments. Though the
skewness factor and the flatness factor, obtained from the third- and the fourth-order
moments, are regarded as important during the initial stage of matter dispersion, the
present study does not solve these higher-order moments, since the emphasis is on
the dispersion coefficient. Equations governing the zeroth-, the first- and the
second-order moments are written as follows:

oM, | &M,
a ke O (13)
oM, | M
e S a9
2
oMy O ot + 2k, (15)

ot z 022
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Boundary conditions for various moments are given in (6). The initial condition for
the zeroth order moment is M, = 8,/H (t =0), and those for the other various
moments are M, = 0 (¢ = 0). Let the current u(z,t) be expressed as

k
u(z, t)y=U '21 Eiz) m(t), (16)
=
where §; and 9, are functions of z and ¢ respectively. The meaning of (16) is as follows:
it is a steady flow if k = 1 and 5, = 1, a transient flow if t = 1 and #, = 1—e™*, and
an oscillatory flow without phase lag if £ = 1 and %, = sin wt(or cos wt). Further-
more, Yasuda’s (1982) analysis corresponds to the case in which k=2,
§ = 1—e# cos Bz, §, = e P sin Pz, 5, = sin wt and 3, = cos wt, where w is frequency
of the oscillation and £ is a constant determined by frequency and viscosity.
The solution of the zeroth-order moment is invariant with time in the case of an
instantaneous line source. Therefore
S,
My(z,t) :EO' (17)
Equations (14) and (15) are non-homogeneous heat-conduction equations, as is well
known. If the right-hand side of each equation is known, we can obtain a formal
solution (Yasuda 1982). The formal expression for the first-order moment is given
as

g k H ¢
Mz, t) = %/‘I(Z’t) %[g Ye { z J. i(€) Cos%gdg J.o eXn”n.(7) d‘r} e Xnt cos%z}.

n=0 i=1 Y0
(18)
If we put
H i t
[" 6@ cos M gag = a1, | emnmar = g
0 H v 0 i
then the second-order moment is expressed as
S S [ [2 © { © k k
Moz, 2keit 235 L ey T e B T oy (H
o(2,t) = H/"z( t) = 17 7 z '"m, : il H)
j & (&) cos gcos gdgj eXn— x”mlg d-r} e Xnt cos%z}, (19)

where ¢, = {1(n = 0), 2(n + 0)} and y,, = (nn)* k,/H?. The right-hand side of (19) can
be seen to consist of two independent terms: one due to the horizontal diffusivity
and the other due to the combined action of flow shear and vertical diffusivity.
Because the horizontal diffusivity has no effect on the flow shear in this model, we
neglect the horizontal-diffusion effect and pay attention only to the above combined
action in the following discussion. Substituting a reasonable functional formula for
the current profile into (18) and (19), we can obtain the analytical behaviour of the
dispersion in the steady, oscillatory and the other time-dependent flows.

3. Vertically averaged solutions of the equations governing the dispersion
due to the shear effect

Yasuda (1982) analysed the vertical profile of the variance in the oscillatory current
forming the oscillatory boundary layer (sometimes called the ‘Stokes boundary
layer’). Principally, this study will take notice of the vertically averaged values, which
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have been worked on generally by many researchers. There are two methods of
taking the average of the variance as follows:

GLUt) = Balt) = fig— 1%, (20)
1 (® _ —
7t = 5 f_w (x—iy)? B, t) dr = Jip — 3. (21)

The overbar denotes the vertical average. Equation (20) gives the averaged variance
in the vertical direction and gives the degree of mixing. On the other hand, (21) is
obtained from averaging the concentration of the diffusing substance and contains
the degree of stretching by flow shear besides that of mixing. Though there is little
difference between both variances when ¢ is large and the dispersing substance is
well-mixed vertically, it is necessary to pay attention to this distinction especially
during the initial stage. From (20) and (21) we can define the respective vertically
averaged dispersion coefficients as follows:
~  1do? ~ oy 1doi*
b=57 - PO =57
The vertical averages of the first- and second-order moments and so on are
obtained as

(22),(23)

i = gt (H) sl (24)

= | DB O+2 . k() i, (0
— i+ a(2 T o () 00, 25)
fiy = 2%[20 6m % (H) Ao (H) Bmou(t)], (26)

where

H t
Apn,(H) = -[ &, (&) cos—g cos = gdg By, () = -[ e(Xn‘x'")’,Bml(T)nl(T) dr.
Substitution of (24)-(26) into (20) and (21) yields

2
. () A, () B, (=2 % b (B i (0™ | (2)

U?
oL = H2,:
T2k U2 -
ox*—;i—g[4m§la (D) Ay (D) B, 0| (28)

fa, (H), Br,t), Apy, (H) and B,,,_ (t) can be integrated, the dispersion coefficient
18 expressed analytically.

In order to analyse the longitudinal dispersion, this study adopts the following two
kinds of vertical profile of the current (figure 2):

1 (dZ£2<H),
(@) §l(z>={0 ((O;‘éd)), 29)

I ([@Sz<H),
= 30
6) &) {3 0<r<d) (30)
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Frourg 2. Vertical profiles of the current in this study: (a) the two-layer flow;
{b) the linear flow.

(@) is a two-layer flow, and the region of 0 £ z £ d is called the ‘dead zone of flow’.
Whend = H in (b), it is a well-known Couette flow having constant shear throughout
the depth. The value of d is arbitrary from 0 to H in both profiles. The profiles (a)
and (b) are respectively called the ‘two-layer flow’ and the ‘linear flow’ in the
following discussion. The oscillatory current in this study will neglect the effect of
the phase distribution for simplicity, i.e. k = 1 and ¢, = sin wt.

3.1. Analytical solutions in the case of the steady current

By substituting velocity profiles as mentioned above into (22)—-(28), we can represent
the vertically averaged variance etc. as follows:

B = UT,[a,t*], (31)
B s e l_e—(mn)zt"
Jy = UPT? [aot* ,,E { () H (32)
oi=U [ za { ~(mmier <3—e—<m">”’>}], (33)
m=1
e} _ a—(mm)it*
A I }] (34)
m=1
D= U2Tc[ o %{1~e—<mn>*t'}2]. (35)
D* = U2Tc[ E %’”{1—5(%)’"}], (36)
m=1

where ¢* = ¢/T,, and T, = H*/k, is called the characteristic time of vertical mixing.
a, and a,, are expressed as
o = {1 —d* for the two-layer flow (a), (37)
® L 1—1d* for the linear flow (b),

() sin®mnd* for (a),

m 4 (cosmmd*—1)2
(mm)® d*2

for (b), (38)
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where d* = d/H. When ¢ is large as e ™*" tends to zero, the dispersion coefficient
becomes steady. The steady dispersion coefficients are written as

. _ Q
Dy=D¢=UT, X 30p (39)
m=1
Suffix s denotes the steady state. If higher-order terms of a,, are negligibly small,
the vertically averaged dispersion coefficients are approximated as

D = UT, [ja, {1 —e™™"}), (40)
D* = UT, [1a, {1 —e™™*"}]. (41)

The steady coefficients in this condition are expressed as
D, = Df =1UT,a,. (42)

Substitution of d* = 1 into (38) yields a, = 1/60.0868... in the case of a linear flow.
This almost completely corresponds to Bowden’s (1965) analysis, where D, = 135 U7,
in the case of a linear flow with constant shear in all depth.7

3.2. Analytical solutions in the case of an oscillatory current

The vertically averaged variance etc. in the case of an oscillatory current with k& = 1
and 9, = sin wt are expressed analytically as follows:

By = UTila, T(t%)], (43)
[~ [e o]
Fa= U2 G370+ T ap BT Tole*) | (44)
L m=1
[ @
7= 0T 3 4y B T, 45)
L m=1
[ o
o2* = U*T2| X a,E,(T) Tm(t*)], (46)
L m=1
JE— x 4
D= UT[ £ jap Bl Ton) . )
—
_ [e¢]
D* = U2T[ T o, B,(T) T;,,(t*)], (48)
m=1
where
1-—-cos2nT.t*
¥y — O ERIr?
q}](t ) 21t7;. ’
T (t*) = Y(mm)? t*+———2ﬂ——[2nT —e (MM {(mm)? gin 2n T t*
m 2 (mm)i+(2nT) T ’

(mm)?
2nT,

r

1
+2n7T, cos 21tTrt*}]—Z{1—cos 4nT. t* + sin41tTrt*},

T, (t¥) = Hmm)2 t* + 1 S[(2nT)2 {1 —fe2(mm*™

(mm)t 4+ (2nT))
—4nT.(mn)? e MW" gin 2T t* +1 ({(mn)?— (2n7T.)?} cos 4nT) t*

vm

(mm)?
2nT

r

+4nT,(mn)? sin4nT, t*> —1]—1 {1 —cos4nT, t* + sin 4nT, t*} ,

T The characteristic velocity U), is the vertical averaged value in Bowden’s (1965) analysis.
Though Dy = §U} T, was given in his work, it corresponds to D, = {3;U*7, in the present paper.
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T (£%) = Ymm)®+ 21T, e~ ™" gin 20T, t* — (R T} sin 4nT} t* +L(mn)? cos 4nT] £*},

2n7T,

(my + @y R e 2

T;m(t*) = %(mn)z +

+2(mm)? e ™™ {(mn)? sin 2n T £*
—2nT} cos 2nT, t*} + 2rnT (mn)? cos4nT t* —L[(mn)*— (2rnT})?] sin 4nT, t*)
—{nT, sin4nT, t* +}(mn)? cos4nT, t*},

(mm)? T = g

I = Gy ety T

a, and a, are the same as those in the steady current. Though the dispersion
coefficients (47) and (48) are seemingly complicated, we can express them in a
simplified form at large values of time as e ™** tends to zero.

D, ., = UT, m%; W0 EL(T) I:%(mn)z—<nT,{1 +%;_;‘::E2_T;2} sin4nT,t*

+1(mm)? {1 —%13;%(-2—)7,—)} cos4nT] t*>] (49)

T,) (3(mm)2—<nT, sin4nT, t* + 3(mn)? cos4nT ¢*>].  (50)

The argument 27 t* of each trigonometrical function corresponds to wt (w is the
frequency of the oscillatory current). Thus it is recognized from (47)—(50) that, though
the dispersion coefficient has cyclical variations with the same frequency as the
oscillatory current during the initial stage, it fluctuates with only a double frequency
at large ¢. The dispersion coefficient in the oscillatory current changes cyclically with
a double-frequency period infinitely, though that in the steady current reaches a
steady and constant value as time proceeds. In order to understand the long-term
variation, we often disregard the variation with the frequency of the oscillatory
current. The vertically averaged variances at every tidal period, which is given by
substituting cos 2rT] t* = cos4nT,t* = 1 and sin 2n7, t* = sin4n7,t* = 0, are written
as follows:

2 2 1— —2(mm)2t*
(2rT;) e J (51)

O-iM_ Usz Z ™ E ( )I:%(mn)zt*+(m1r)4+(21rTr)2 2

m=1

T2 = [2m E a. E (T)I:l(mn)zt*+——(%)—2—

zM c —1 m-m\‘r/| 2 (mn)4+(2n7})2

The tidally averaged dispersion coefficients at each tidal period are given by the

difference between the above variance at the (I+ 1)th tidal period and that at the
ith one:.

{1 —e'<m">2t‘}J . (52)

I er1y
Dy =UT. L fon Bl 3o 2{(mm)+ (2T

xexp| —2(’"“) ZJ {1 —exp [—g’;—“qﬂ . (53)

T
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Frcure 3. Stationary dispersion coefficients in the steady current for each d*.

x exp[—“”—TT:)—zz} {1 —exp[—— 2(”;”)2}}} . (54)

r

where [ is any positive integer. The steady values at large ! are

= * T [ Nt A— 2 1 2

Ds = U ,,,El 4 (mm)*+ (2nT)? v m2=1 o () B (T1) (65)
If 7. is very small the dispersion coefficient in the oscillatory current is half of that
in the steady current, as shown by Bowden (1965).

4. Solution curves of the vertically averaged dispersion

From the analysis in §3 we can recognize that the stationary dispersion coefficient
in the steady current of (39) is the most basic one. Figure 3 illustrates it with each
d* (from zero to unity) in both typical current profiles. The dispersion coefficient has
a maximum at d* = 0.5 in the case of the two-layer flow, as is to be expected. Though
it is considered to have a maximum at d* =1 in the case of the linear flow,
unexpectedly it reaches a maximum at d* = 0.72.

The dispersion coefficient in the oscillatory current is recognized to depend on the
value of 7( = 1, /T) from (55). This is shown in figure 4 for the case of each flow profile.
The case d* = 1 in the linear flow corresponds to Couette flow, and the curve for this
case is identical with that of Holly, Harleman & Fischer (1970). This figure shows
that the rate of decrease of the dispersion coefficient to 7} varies for each flow profile.

Figure 5 represents the variation of the vertically averaged variance with time in
the steady flow with d* = 0.5 of the two-layer flow. Figure 6 shows the variation of



392 H. Yasuda

1
e
F * -
= N
107!
-
102 |
two-layer flow
- - -~ linear-profile flow !
103 L
10—
y
1075
s —1
T |
r l
10-¢ L L:J.-“ L ALL_LU Il lllllll i xnlnLu

0.1 1 10 100 1000
T. T./D
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the vertically averaged dispersion coefficient with time. The dispersion coefficient can
be seen to reach steady state when the time approaches nearly a half of the
characteristic time T, of vertical mixing. This figure indicates that D* is larger than
D during the transient state until steady. Such processes of the variation of the
dispersion coefficient with time are almost similar to one another, even if the current
profiles are different. Figure 7 shows the variation of the variance with time in the
oscillatory current (7, = sinwt), the vertical profile of which is identical with that of
figure 5. Figure 8 shows the dispersion coefficient corresponding to figure 7. The
equation %, = sin w¢ means that a line source is released at the slack period, which
is shown by a thick solid line. A thin solid line in these figures illustrates the case
of 7, = coswt, which means that a line source is released at the maximum flow period.
Figures 7 and 8 are for the case 7, = 10. The dispersion coefficient reaches the
stationary state in both the steady current and the oscillatory one when e ™*** tends
to zero. Therefore the stationary state approximates to the period of #* = 0.5. Though
approaching a constant value in the steady current as time proceeds, the dispersion
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F1evrE 5. Temporal changes of the vertically averaged variances in the steady current with two-layer
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Ficure 6. The dispersion coefficients with the same current as in the case of figure 5 given by
(35) (solid line) and (36) (broken line).
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Froure 7. The variations of the vertical averaged variance with time in the oscillatory current with

two-layer profile (d* = 0.5). The thick solid and broken lines correspond to (45) and (46) respectively.
The thin solid line is for 4, = coswt, which means that a line source is released at the maximum

flow period. (7} = 10.)

coefficient changes cyclically in the oscillatory current even in the stationary state,
as is expected from the results of §3. The dispersion coefficient D*, obtained by the
averaging method of previous researchers, is sometimes negative. This results from
increase and decrease of the shear of the first-order moment, and the detailed
structure will be illustrated in §5. The dispersion coefficient D, proposed in the present
study and representing the degree of mixture of the substance, is by no means
negative, even when it is very small. Figures 9 and 10 show variances and dispersion
coefficients when 7, = 100 with the same current profile as figures 7 and 8. When 7},
is large, which results from small k,, the two types of vertically averaged dispersion
coefficient are very different from one another. Figures 11 and 12 show variances and
dispersion coefficients for the case T, = 10 with d* = 1 of the linear flow. Figure 13
is the variation with each tidal period of the dispersion coefficient in the case d* = 0.5
of the two-layer-flow. The vertically averaged dispersion coefficient without cyclical
change can be seen to reach the steady value more rapidly than the period that e ™"

becomes nearly zero, especially when 7., is large.

S. Vertical structure of shear diffusion
Though the dispersion coefficient is generally evaluated through the vertical (or

cross-sectional) average, the study of the variation of its vertical profile with time

is considered to help us to understand better the nature of the dispersion due to the
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F1cURE 16. The variations of the vertical profile of the variance with time (d* = 0.5 of the two-layer
flow): (a) the steady current; (b) the oscillatory current for 7} = 10.

shear effect. This section will show a few examples of the vertical structure of the
dispersion.

The vertical structures of the variance and the dispersion coefficient etc. can be
found by substitution of (18) and (19) into (9) and (12) etc. In figure 14 is shown
the temporal change of the vertical profile of the first-order moment during the initial
stage. Figures 14 (a) and (b) are the cases of the steady and the oscillatory currents
respectively. The current profile is d* = 0.5 for two-layer flow and 7, = 10 in the case
of the oscillatory current. Figure 15 shows during the stationary stage (t* = 0.9~1).
The time interval of each profile in both figures is g;7;,. In the oscillatory current
one tidal period corresponds to {47;, where 7, = 10. We can see from figure 15 that
the dispersion coefficient can have a variation with double frequency in the oscillatory
current, since the vertical profiles of the first-order moment for the flood period is
completely symmetric with those for the ebb period. Figure 16 illustrates the
temporal change of the vertical profile of the variance with the same current condition
as that of figure 14. This figure explains that the dispersion is at first generated at
the level 2* = d* (where a difference in velocity appears, or in other words the flow
shear is maximum) and gradually transmitted in the vertical direction. Figure 17
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Fioure 17. Temporal changes of the dispersion coefficient at 2* = d* and at 2* =0 or 1 {(d* = 0.5
of the two-layer flow): (a) the steady current; (b) the oscillatory current for 7. = 10.

shows the variations of the dispersion coefficient with time at z* = 0.5 (where the
velocity gap appears) and z* =0 or 1 (bottom or water surface). Note that the
dispersion coefficient at level z can be rewritten from (14), (15) and (12) ast

k, (o 3
Dz, t) = —25(&’%2—2#1 %) : (56)

Although the dispersion coefficients at two typical levels reach the same constant
value with time in the steady current, they fluctuate separately in the oscillatory
current, even at large time.

T Since u, and x4, are formally expressed as X%_, F, (t) cos (nt/H)z in this study, differentiation
is easier with respect to z than ¢.
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Ficure 18. Temporal changes of the dispersion coefficient at z* = d* and 2* =0 or 1 in the
oscillatory current with two-layer flow (d* = 0.5): (a) T, = 100; (b) 1; (¢) 0.1.
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6. On the negative dispersion coefficient in the oscillatory current

That the vertically averaged dispersion coefficient can be sometimes negative in
the oscillatory current was explained in §§3 and 4; this is due to the usual definition
of the vertical average. Smith (1983) showed that the increasing rate of the variance
(corresponding to the dispersion coefficient) at a particular level can be negative in
reversing flows of oscillatory currents. Figure 17 (b) in the present paper supports the
above only during the first tidal period (0 < ¢* < 0.1). This figure illustrates that the
negative dispersion coefficient appears not only in reversing flows but twice for one
tidal period at large . Figure 18 shows the variations of the dispersion coefficients
at two particular levels with time in the cases 7. = 100, 7, = 1 and 7, = 0.1. If 7}, is
very small, it is difficult to detect the negative dispersion coefficient, as was stated
by Smith (1983). The negative is by no means for mixing to proceed reversely, i.e.
reduction of entropy. It is because the diffusing substance dispersed strongly at a
particular level and a certain period is diffused vertically at the following period,
which can be seen from figure 16 (b). The vertically integrated dispersion coefficient
(corresponding to D in this study if divided by depth); in other words, the dispersion
in the two-dimensional (z, z) plane does not become negative, as stated in §4.

7. Concluding remarks

Yasuda (1982) analysed the longitudinal dispersion in an oscillatory current
forming a boundary layer given analytically, and studied how the longitudinal
dispersion is generated by the shear effect of the oscillatory current. Since it was the
primary aim to understand the elementary nature of the longitudinal dispersion in
such a current, general characteristics of it could not be sufficiently shown in that
paper. The present paper has developed the previous analytical method to deal with
longitudinal dispersion due to the shear effect, making a comparison between that
in the steady current and that in the oscillatory current. The time-dependence of the
vertically averaged dispersion coefficient has been elucidated analytically in both the
steady and oscillatory currents, regardless of the vertical profile of the current. The
dispersion during the initial stage or its variation within one oscillatory period, which
has strong vertical shear of the first-order moment, has required a new definition of
the variance and the dispersion coefficient. If we regard the dispersion as a mixing
process like turbulent diffusion, the newly defined D in this study is considered to
be more significant than the usual D* in understanding the dispersion. D is by no
means negative, even when D* or the dispersion coefficient at a particular level is
negative.

The work reported in this paper was carried out as a part of the research conducted
at the Government Research Institute, Chugoku, and funded through the
Environmental Protection Agency of the Japanese Government.
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